The process of iPSC differentiation to neurons and neuronal cells is of special importance for neurobiology and related disorders, considering the dearth of clinically relevant in vitro models available for research, drug screening and development, as well as the lack of therapy to reverse neuronal damage.
Benefits and advantages of iPSC differentiation to neural stem cells (NSC), neurons and glial cells:
- Provides genetic and physiologically relevant in vitro models to study neural development and associated disorders: congenital disorders, neurodegenerative disorders and brain tumors.
- Generates a valuable model for identifying new targets for neuro-regeneration as opposed to treatments limiting to symptomatic relief or delaying disease progression.
- Allows for future adaptation of technology for regenerative medicine and cell therapy in humans for the treatment of Parkinson’s disease, Lou-Gehrig disease (ALS), Huntington’s disease, and spinal cord injury among other diseases.
- Differentiation of genome engineered in iPSCs (mutation introduction or correction) to neurons, offers an isogenic source of control-disease cell lines for basic research, drug development, hard-to-model neurological disorders, and potentially for gene therapy.